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The Theory of Melting in Heteropolymers. II. 
Correlated Chains 
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Equations are derived for the calculation of the ground-state melting curves 
for polynucleotide sequences with correlation between the nearest neighbors. 
The case of arbitrary correlated sequences is also considered. The effect of 
correlations in the sequence on the width and on the intrinsic fine structure 
of melting curves is discussed. 
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1. INTRODUCTION 

In the first paper of  this series (1~ a method was developed for treating the 
melting of  heteropolymers with a random sequence of  components. Assuming 
strong cooperativity, the problem was reduced to studying the ground state of  
the polymer. The ground-state energy E and the fraction of broken bonds ~7 
were then expressed in terms of probabilities of  certain Brownian trajectories 
of  a fictitious particle. Systems of difference equations were obtained for 
determining these probabilities. (It should be mentioned that this method 
originated from the ideas of  Azbel '(2,a) and Lifshitz. (~) In the second paper  
of  this series (5~ this method was used for studying the intrinsic fine structure 
of  melting curves. In the present work we shall generalize the method for 
sequences with correlation between the nearest neighbors and also obtain 
some results for arbitrary correlated sequences. 

The melting of nonrandom polymers has been studied by several authors. 
Lehmann and McTague (6~ reduced the problem to the solution o f  an integral 
equation, which, however, cannot be solved analytically, and thus numerical 
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methods have to be used. Lacombe and Simha (7) derived recurrent relations 
for the calculation o f  melting curves on computers.  Lifshitz (~ obtained an 
approximate  analytic solution o f  the problem, which, however, is valid only 
close to the melting temperature. Our  method reduces the calculation o f  
melting curves to the solution o f  a system o f  linear difference equations. An  
analytic solution cannot  be obtained in the general case. However,  the equa- 
tions can be solved at certain values o f  parameters,  providing valuable 
information about  the melting curves. Our  results reduce to the results o f  
Lifshitz in the corresponding approximation.  In the general case, our  equa- 
tions can be conveniently used for a direct calculation o f  melting curves on 
computers.  

2. C O R R E L A T I O N  B E T W E E N  T H E  N E A R E S T  N E I G H B O R S  

Let us consider a heteropolymer  consisting o f  links o f  two different 
types, which we shall label by the numbers  1 and 2. The concentrations o f  
links o f  the  two types are defined as ~o~ = .4r~/.A;, where ~ = 1, 2; ~4r~ is the 
number  o f  links o f  type a in the chain, ~ is the total number  o f  links, 
~1 + co2 = 1. I f  there is a correlation between the nearest neighbors, one 
can introduce the conditional probabilities ~ = sg'~e/~4;~, where Jg'~B is the 
number  o f  pairs (%/3) in the chain;  a, 8 = 1,2. The quanti ty ~,~ is the 
probabil i ty that  a link o f  type c~ is followed by a link o f  type 8. F r o m  
the relation ~ e  = ~ we find that  ~ e ~  = ~ e  and 

~ 1  = r "31- r -1 ,  ~ 2  = r162 -~- f'~12) - 1  (1)  

The probabilities ~ e  satisfy 

2 

__ia;~B = 1 (2) 

To define the correlation radius, we note that  the determinant 
det(~,e  ) = A = ~11 - ~21 = ~22 - u~lu has the meaning o f  " o r d e r  
parameter ."  For  a r andom sequence ~=~ = ~oa and A = 0. I f  ~xm is the 
probabili ty that  two links separated by a distance M are o f  types ~ and 8, 
respectively, then we can define the correlation radius R by the relation 

det(~(,~ )) = e -1 (3) 

It is easily seen that  det(~.~ )) = A M and thus 

R -- - ( l n l •  (4) 
R differs significantly f rom 1 only if  1 - ]A] - 8 << 1. In  this case R ~ 8 -*. 

N o w  let us turn to the discussion o f  the melting o f  heteropolymers with 
correlation between the nearest neighbors. As in Refs. 1 and 5, we can intro- 
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dace the probabilities ~m +, ~ + ,  ~ - ,  ~ - ,  q~, and qo and the average lengths 
Lm +, Ik, and lo (the definitions are given in Refs. 1 and 5). One would think 
that now the probabilities will have indices corresponding to the type of the 
preceding link. However, this is not so. The links preceding sections corre- 
sponding to ~m + and ~ + are always of type 2 and the links preceding sections 
of type ~ - ,  q~, and q0 are always of type 1. The probability ~ -  is defined as 
a nonconditional probability of a corresponding section. 

The expressions obtained in Refs. 1 and 5 for the ground-state energy 
per link E, the fraction of melted links ~7, and the jumps A~A, A~B , Ar/c can be 
easily generalized to take account of the nearest neighbor correlations (we 
use the notations of Refs. 1 and 5): 

E =  h z -  U ~ -  ~ ~m + 3N + m + ( ~ - ) - ~  kqk (5) 
m = O  k k = l  

~ 2  ~ +  
x] - -  m (1 - qo)~-Lm + + (1 - qo) qkl~ + ~-qolo 

~ 1 2  m = O  = 

(6) 

A~A = (~2/to~2)(~-)2~o+[(1 - qo)Lo + + qo/o] (7) 

, ~  = 2 ( ~ / ~ 1 ~ ) ( ~ - ) ~ +  qo/o (8) 

A~o = (~z/~2~)(~+)2~o - [(1 - qo)Lo- + qolo] (9) 

(note that the expression for E has not changed at all). 
The probabilities ~ - ,  ~ - ,  q~, and qo satisfy the identities 

~ -  + ~ q~ = 1, ~2(1 - qo)~- = ~12~-  (10) 
k = l  

which can be proved from their definitions. One can also show that in the 
case r = 1 

(1 - qo)qx --- ~ 1  (r = 1) (11)  

3. E Q U A T I O N S  FOR PROBABIL IT IES A N D  
A V E R A G E  LENGTHS 

Following the method discussed in detail in Refs. 1 and 5, let us consider 
the motion of a fictitious particle that can step r units up (r-step) or s units 
down (s-step) with certain probabilities. Let u~11 be the probability that after 
an r-step the particle makes another r-step, ~12 the probability that after an 
r-step the particle makes an s-step, etc. Calculation of ~m + and Lm + results 
in the problem of Brownian motion of the particle between two absorbing 
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boundaries, 
can assume arbitrary integral values. The corresponding equations are 

r  - ~'~2r + ~22r  (0 ~< n ~< N -- s -- 1) 
0 2 a )  

+ 
r "~- 0 (n >1 N -  s) (125) 
r = o (n .<< r - 1) 

r = 0 (12c) 

~ + - 1 )  ~m + = ~11 q~M,N+,~-~ + ~ZZ $M,N+m-r (m = 0, 1 .... , r  
M=O M = 0  

(13) 

~m+Lm + ~ ~'~11 ( M  + 1)~I ,u+m_ r + ggY'21 ( M  + 1)~M,N+m_ r ( 1 4 )  
M = 0  M = 0  

Here 6~,. is the probability that at " t ime"  M the "part icle" has "coor- 
dinate" n, its last step being of s-type; eft,. is the probability of having 
"coordinate"  n at " t i m e "  M, the last step being of  r-type. 

Similar equations can be derived for q~, l~: 
+ 

+ 

r 
r 

q~ 

q ~  

and for qo, 

~ , ~  

n = 0 and n = N, with n the coordinate of the particle, which 

/ 0 :  

+ 
-~" ~ 1 2 ( ~ M - l , n + s  "J- 22~M-l,n+s 

gg~ + = ~ 4 ~ - 1 , . - ~  + '~1r 

= 0 (n >/ - s ; M #  0) 

= 0  (n~< - N + r -  1) 

( - N ~ <  n ~ - s -  1) 

( - N + r ~ < n  ~< - 1 )  
(18a) 

0 8 b )  

(15a) 

0 (n >~ --s + 1) 
o (n .< - N  + r - 1) (15b) 

0 
8o~ (15c) 

= + - , ,  = 1 , 2  . . . . .  r )  ( 1 6 )  
M=O M = 0  

= ~11 ~ (M + 1)r + ~21 ~ (M + 1)r (17) 
M = 0  M = 0  
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ef t , .  = 0 
(18c) 

qo = ~ n  ~s + ~21 ~u.-~ (19) 
M = O  M=O 

q o l o  = //211 ~ ( M  "[- 2)q~fi,--~ + ~021 ~ (M + 2)r (20) 
M=O M=O 

The probabilities ~ -  and ~ -  can be found from the identities (10). 
Equations (6), (10), and (12)-(20) can be used for the direct calculation 

of  melting curves on computers. Of  course, in this case the summation over 
M in Eqs. (13), (14), etc., has to be cut off at some value Mo which is much 
larger than the corresponding average length. 

4 .  S P E C I A L  C A S E :  r = s = 1 

Equations (12)-(20) can be easily solved in the case r = s = 1. We shall 
sketch the method of solution, which has been discussed in detail in Refs. 1 
and 5. Introducing 4,~ ~ = ~ = 1  6},~ and summing Eqs. (12a) with r = s = 1 
over M from M = 1 to infinity, we get equations for ~b~ ~. Then, looking for 
solutions of  the form ~ = ~ A k * x k  ~, we obtain a relation between A~ + 
and A~-, A~ + = u~ffll(xk - ~11)Ak-, and an equation for x~, 

�9 4eh lX~ "1 + ~z~22Xlc = . ~ 1 1  + ~'~22 (21) 

This quadratic equation has two solutions: xl = 1 and x2 = ~11/u,22. The 
coefficients A~ ~ can be obtained from the initial and boundary conditions, 
Eqs. (12b), (12c). The final result for #o + is 

~ o  + = ~ 2 x ( x ;  1 - 1)/(~12xff z~ - ~21) (22) 

Similarly, one can find 

~ _  = ~ 1 ~ ( x 2 -  1) ~ _  x 2 -  1 
X N+I ~ = /~22012"2 {Z~2122N 

21 2 - -  {~12 - -  ~ 1 2  

t . # 2 1 2 2  N - -  ~ 1 2  . 
q l  = X2 .~v + 1 

~21"A'2 - -  ~12 

, ,~12'~'21(xJ - 1) 

qO ~ ~21X2 N -- ~ 1 2  

(23) 

and 

E = h' - U ~ 1 ( ~ 2 2  - ~ n )  
~ 2 2 X 2  N - -  ~ 2 1  

(24) 
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To obtain an approximate expression for E near the melting temperature 
for arbitrary U1 and U2, we introduce A = a~11 -- ~21 = ~22 -- ~ 2  
and 0 = ~ 1 U 1 -  a~2U2. At the melting point, 0 = 0, and near the 
melting temperature, 0<< UI ~, U2. In the case U1 = Uz = U, O/U = 

(~21 - u~12)/(~zl + w~2) << 1. Now we can express all the probabilities ~ e  
in terms of  A and O/U: 

~ 1 ~  = 1 - ~ 2  = � 8 9  + k  + (1 - A)O/U] 
(25) 

~22 = 1 - -  ~ 2 ~  = � 8 9  + A -  (1 - A ) o / g  l 

Substituting Eqs. (25) in Eq. (24) and noticing that 

x s  1 + 1 T A - -  exp - N l n  1 + 1 T A  

exp /3 1 + 

where 3 = U2/2, we get 

E = h  I -  0 1 - e x p  /3 1 T (27) 

Comparing this expression with Eq. (67) of  Ref. 1, we see that in the case 
of  arbitrary U1 and U2 we have to put/3 = U1 U2/2, where the values of  U~ 
and U2 are taken at the melting temperature. 

It can be shown that in the case of  correlation between the nearest 
neighbors, the result obtained by Lifshitz (4) is equivalent to Eq. (27). Of  
course our argument does not give a strict derivation of Eq. (27). In the next 
section we shall obtain this equation in a different way. 

The fraction of  melted links can be found by differentiation of  E: 

~E 
~7 = 90 (28) 

Assuming a linear temperature dependence of  U1 and U2, U1 = a ( T  - T1), 

U2 = - a ( T  - 7'2), we get for the width of the melting curve 

~ - 1  1 + A 6/3 ~ n  + ~ 2 =  6/3 ( 2 9 )  
A T  --- " ~  T=Tra " ~ - -  1 -- A a V  = u>i~. + ~21 a V  

We see that AT is rather sensitive to the correlations in the sequence. I f  
~1~, ~22 >> ~12, ~21, then the polymer consists of  long, pure component-1 
and component-2 sections which melt out at temperatures close to 7'i and 
T2, respectively, and the width of  the melting curve is much larger than that 
for a random sequence. In the opposite limiting case ( ~ ,  ~22 << ~ 2 ,  u~2~) 
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the sequence of  components is only slightly different f rom 121212 .... and 
most of  the links melt near Tm= �89 + T2), so that ATis much smaller than 
AT for a random sequence. 

To study the effect of  the correlations in the sequence on the intrinsic 
fine structure of  melting curves, one has to calculate the average lengths 
L0 +, lo, and ll (in the case r = s -- 1). However, the expressions one gets 
for the average lengths and the resulting expressions for AT/A,~,c are rather 
complicated and difficult to analyze. To have an idea of the dependence of the 
fine structure on ~ ,  we calculated the magnitude of the principal peak &~A 
and its width ~TA in two limiting cases: ~ ,  u~22 << u~2, ~2~ and ~z ,~22>> 
~12, ~2~. To simplify the answers, we shall assume also that ~ = ~22, 
u~2 = ~2~, and N>> 1. Then in the first case ( ~  << ~ 2 ) ,  Lo + = N 2 / 3 ~ ,  
lo = 2, and 

A~l = 1 /6N (30) 

The average length of  a newborn section of type (A) equals (see Ref. 5) 

LA = Lo + + qolo(1 - qo)-XN2/3u~ 

and the width of the peak is given by 

3TA = 4T/aLA = 1 2 ~ T U 2 / a V  ~ = 4 T A T / V  

(31) 

(32) 

where AT = 3~I~U2/aV is the width of the melting curve. In the second 
limiting case ( ~ 2  << ~ ) ,  Lo + = N, qolo ~ O, and we get 

A~A 1 2 (33) 

(34) LA = N, 3TA = 4~12TAT/3U 

where AT = 3 U2/~2aV.  From Eqs. (30)-(34) we see that the magnitudes and 
widths of  the peaks are sensitive to the correlations in the sequence. On the 
other hand, the positions of the peaks are independent of  ~ ,e  and determined 
only by U~, U2, and V. The conditions for the principal peaks are the same 
as for a random sequence (see Ref. 5). 

5. ARBITRARY CORRELATED SEQUENCES 

Let us now assume that  there is a correlation between m + 1 nearest 
neighbors. In this case the sequence is completely characterized by the 
quantities 

~1~...~o+1 -= ~1.. .~= , 1 t ~ 1 . . . ~  (35) 

where a~ = 1 or 2. Here u~,l...,=+ 1 is the probability that a section (-1,..., a,~) 
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is followed by a link of type c~,~ + 1. The total probability of a section (~zl ,..., ~k) 
is given by 

W~r..~ - Jt'~l...~J.,~ = ~ . . . ~ l . . . ~ _ r . . ~ i  (36) 

The probabilities ~r. .-~ and W~r..~ ~ satisfy the identities 
2 

~,I...~,B = 1 (37) 
B = l  

2 

= ( 3 8 )  
C~j_ = 1 

2 

W~... ,~_~ = W,~...~_x (39) 

2 

~B...~0W~B... r = We...r6 (40) 
g = l  

To describe the Brownian motion corresponding to our sequence, we 
have to introduce 2 m functions ~ ' " ~  q~M,, satisfying the equations 

2 

~'-'e~ = ~ ~ .t~'"e (41) 
~=I 

where 3,~ is the Kronecker symbol. The probabilities ~ + ,  qk, and qo will 
now have subscripts and superscripts; for example, (~  +-~B~...~ The sub- 
scripts correspond to the links pree.eding the section and the superscripts 
correspond to the last rn links of the section. The probability ~ -  has only 
subscripts and ~ -  has only superscripts. One can think of ~m +, qk, and q0 as 
operators in 2m-dimensional vector space. Then ~ -  and ~ -  are ket and bra 
vectors, respectively. 

The expressions for E, ~7, and A'qA,B,C are easily found in the case r = 1 
(cf. Refs. 1 and 5): 

E = h' - U<~-I~o + ~ n4~l ~ - )  

= h' - U < ~ - l ~ o + 4 ~ ( i -  40-~1 ~ - )  (42) 

where z? is the unit operator. The equations for ~7 and A~) become more 
complicated: 

= (~-I{(~o+Lo +) + ~o+(1 -- #z)-~(q~ll) 

+ ~ o + ( i -  C]o)(qolo'A')}(i- ~z)-~[~ - )  (43) 

A ~  _- ( ~ -  [(~o+Zo +) + ~ o + ( 1 -  4o)-a (qolo)l~-) (44) 
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A 

where the operator (AB) is defined as component by component product of 
operators A and/~. (Note that the average lengths Lo +, 11, and lo also have 
subscripts and superscripts, i.e., they are operators.) 

If  r ~ 1, then there are a number of operators ~ that do not commute 
with each other. In this case the equation 

( �9 " n~ v q~] = 1 -  qk 
~=o ~=o "k=l n~!J 

which has been used in Refs. 1 and 5, is no longer correct, and we fail to 
obtain closed expressions for E, ~7, and A~7. Equations (42) and (43) are not 
sufficient to calculate the melting curves, since they give the values of E and 

only for certain values of temperature corresponding to r = 1. On the 
other hand, Eq. (44) and similar equations for A~B,o and LA,B,c can be used 
for the calculation of the magnitudes and widths of the principal peaks on 
the differential melting curve corresponding to U~/U2 = 1, 1/2, 1/3,... 

As in Ref. 1 and in the previous section of this paper, one can try to 
obtain an approximate expression for the ground-state energy E near the 
melting temperature. Summing Eq. (41) over all M from M = 1 to infinity 
and introducing 

= ~ q~z~,, (45) ~g...B =...~ 

M = I  

we get 

2 

~...ay = ~ ~ ~. . .B (46) /r - r~i ,  1 + s 6 y 2  

Looking for solutions of Eq. (46) of the form 

(~. . .B = A~. . .Bx . (47) 

we get a system of homogeneous linear equations for A~'"B: 

2 

A ~'''~ = ~ ~...B~A'~'"ex-r~,l+~~ (48) 
/ r  

The values of x are determined by the equation 

D(x) = 0 (49) 

where D(x) is the determinant of the system. 
Our analysis of random sequences m suggests that only one of  2m(r + s) 

roots of Eq. (49) is important near the melting temperature, namely the 
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root  that  is close to 1 : x = e ", l~l << 1. The ground-state  energy is then given 
by 2 

E -= h ~ - 011 - e x p ( - ~ N ) ]  -~ (50) 

Expanding Eq. (49) in powers of  ~ near c~ = 0, we get 

~D'(~ = 0) + �89  = 0) + . . . .  0 (51) 

In  the first approximat ion  

= 2D'(O)/D"(O) (52) 

It can be shown that  

D'(0) = const x ( ~ r  - ~2s)  (53) 

Therefore we can write c~N= ~OV/~, where /3 = U~U2/2 and  K = 
K(~...B, r/s). In  our  approximat ion  we can take the value of  r/s at the 

melt ing po in t :  r/s = ~ 2 / ~ ,  and  x becomes a constant.  The width of  the 

mel t ing curve is given by 

A T  = 6~3~KAY (54) 

In  the case of  r andom sequences (m = 0), K = 1. I f  there is a correlat ion 

between the nearest  neighbors (m = 1), a simple calculation gives 3 

~o12 + ~2~ (m 1) (55) 
t~  "}- ~12 

In  the case m = 2 we get a rather  complicated expression: 

+ ~ 1 ~  - ~ 2 ~ 1 )  - (2 + ~ + ~ ) ~ , / ~  

- (2 + ~22,  + ~ 2 ) ~ 1 2 ~ / ~ ]  -~ (56) 

where 

~ 1  = 1 - ,02 = ~ 1 ( ~ 2 1 1  + ~ . ~ ) [ ~ 2 2 ~ ( ~ 2 ~ 1  + ~112) 

+ , ~ 2 ( ~ 2  + ~ ) ] - ~  (57) 

Note  that  one can get expressions for K for the cases m = 1 and  m = 0 by 

dropping one or both  of the first two indices in ~ in Eq. (56). In  the general  

case ~: can be calculated by computer .  

2 Taking into account only one of the roots of Eq. (49) is equivalent to using the diffusion 
differential equation instead of the difference equations (46). Lifshitz ~4> has shown that 
the diffusion equation approach leads to Eq. (50) (see also Ref. 1). Note that this 
approach is justified only if R << L, where R is the correlation radius and L is the 
average length of a melted section. 

3 Note that Eq. (50) with ,r given by Eq. (55) is identical to Eq. (27). 
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